
OgreHaptics Manual v0.2 (’Cyta’)

Jorrit de Vries (jorrit@jorritdevries.com)

January 6, 2009

mailto:jorrit@jorritdevries.com

Copyright c© 2006 - 2008 Jorrit de Vries

This work is licenced under the Creative Commons Attribution-ShareAlike 3.0
License. To view a copy of this licence, visit http://creativecommons.org/licenses/by-
sa/3.0/ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stan-
ford, California 94305, USA.

1

http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/

Contents

1 Introduction 3
1.1 Haptic Rendering . 3
1.2 Multithreading . 3
1.3 Spaces . 4

2 Core Objects 5
2.1 System . 5
2.2 RenderSystem . 6
2.3 Device . 6
2.4 ForceEffect . 6

3 Scripts 8
3.1 ForceEffect Scripts . 8

3.1.1 Loading Scripts . 8
3.1.2 Format . 8
3.1.3 Top level ForceEffect Attributes 9
3.1.4 Algorithms . 9

4 Known Issues 12

2

Chapter 1

Introduction

This manual is intended to give you an overview of the components of OgreHap-
tics, a library aiming to ease the integration of commercially available haptic in-
terfaces with the ogre 3D graphics rendering engine (http://www.ogre3d.org/),
and their usage. Before getting to these components however, here follows a brief
introduction for those unfamiliar with the concept of haptic rendering.

1.1 Haptic Rendering

Haptic, from the Greek words haphe and haptesthai, refers to the sense of contact
or touch. Haptic rendering refers to the algorithms and software used to display
this sense through input/output interfaces. Through these interfaces the user
can feel and interact with virtual three-dimensional objects. This manual will
use the term haptic device for such an interface.

Haptic rendering, or the rendering of forces, can be performed in several
different ways. Surface rendering, in which a force generated by the collision
between the end-effector and a virtual object is displayed to the user, is one of
the most compelling forms of haptic interaction. Another form is the rendering
of environmental force effects, such as force fields or the viscosity of (a part of)
the virtual space through which the user moves the end-effector. The current
version of OgreHaptics only implements the rendering of force effects, with
surface rendering planned for the next release.

Due to the human perception capabilities to process tactile information the
rendering of forces through the haptic device needs to be executed at a rate of
approx. 1000 Hz in order to present smooth haptic display. This is a significantly
higher rate than the rate for which the graphical display needs to be updated
in order to display smooth motion. The difference in update frequency between
the two outputs needs to be addressed.

1.2 Multithreading

To maintain the continuous high rate of force rendering, the application makes
use of multiple threads, e.g. a haptic thread and one or more threads which we
will call the client thread. In the client thread usually the graphic display is
rendered.

3

http://www.ogre3d.org/

To prevent conflicts in accessing attributes used by multiple threads, so-
called race conditions, OgreHaptics implements the means to provide thread
safe data synchronisation between the client and the haptic thread. This ensures
data used by the haptic thread as well as in the client, i.e. the transformation
of the end-effector, can be safely used by the latter. Since the haptic thread
needs to run at a much higher pace, it follows that the execution of the client
thread will always be blocked when data is synchronised.

Through the use of multiple threads OgreHaptics follows the current trend
in hardware development, in which the use of multiple cores is becoming more
common.

1.3 Spaces

A virtual environment consists of several transformation spaces combined to
display a virtual object correctly on screen. Vertices defining the geometry of a
virtual are transformed in the local object space. The object itself is transformed
to be placed correctly in the world space. OgreHaptics uses a similar concept
for haptic rendering.

A typical haptic device has a limited physical workspace in which the end-
effector can be moved around and in which the rendered force can be optimally
displayed. For example, the Falcon R© device by Novint Technologies has a
physical workspace of 120x120x120 mm. Should the application allow the user
to move the virtual end-effector around the entire virtual environment, which
might consist of hundreds of thousands of units in each dimension, the user will
have a very hard time tracking the virtual end-effector, since the end-effector
moves with numerous world units per mm movement in the device workspace.

To limit the virtual workspace dimension OgreHaptics provides the means
to define a subset of the world to be mapped against the physical workspace of
the device. The box describing the dimensions of this subset is called the touch
space, positioned around the center of the world. To be able to reach all parts of
the virtual environment, the client application can set a transformation matrix
to transform the touch workspace to world space coordinates.

The transformation from world space to device workspace is as follows.

world space
world-touch

matrix
- touch space

touch-workspace
matrix

- workspace

Figure 1.1: Transformation matrices

4

Chapter 2

Core Objects

This chapter provides you with short descriptions of the core objects used by
OgreHaptics to perform haptic rendering. Shown below is an uml diagram
giving an overview of the core objects and how they relate to each other.

Figure 2.1: uml overview

More details on these objects can be found in the following sections.

2.1 System

The System object is the main entry point to the OgreHaptics system. This
object must be the first one of the OgreHaptics objects to be created and the

5

last one to be destroyed. It relies on the Ogre::Root class being instantiated.
Through the System object plugins, i.e. for adding haptic rendering devices

to be available to the application, are loaded, resource managers are initialised
when needed and it also serves for creating new devices and updating the whole
system every graphical rendering frame.

2.2 RenderSystem

The RenderSystem is an abstract base class which defines the interface of
for an haptics API. It is currently implemented for the OpenHapticsTM SDK
(http://www.sensable.com/) to be used with PHANToM R© devices and the
HDALTM SDK (http://www.novint.com/) to be used with the Falcon R© device,
but can be extended to make other types of devices available. It is reponsible
for managing the scheduler used by the haptic thread for the specific API’s.

A typical application does not communicate with the RenderSystem object
directly – only in the cases when you want to access advanced methods such as
scheduling callbacks from the haptic thread you need access to the RenderSys-
tem directly.

2.3 Device

The Device object defines an interface to the underlying haptics API needed
to control the haptic device supported by that API. An instance of the Device
class represent a single physical haptic device.

Through the Device object you can control the input and the output of a
haptic device, such as the settings of the touch space (see 1.3) to be mapped to
the device workspace and the transformation of the touch space, and query the
current state of the device as well as register to listen to events generated by
the device.

Instances of the Device class are created through the System object. It is
advisable to first obtain a list of information about available/connected devices,
and instantiate a new Device using information from that list. If you know
which API will be used for communicating with the haptic device(s), it is also
possible to instantiate zero-based indexed devices for that API.

2.4 ForceEffect

The ForceEffect object provides the means to create environmental forces such
as viscosity, springs and rumble. These forces are environmental, because they
are not related to a particular entity or shape in the virtual environment.

A force effect consists of one or more ForceEffectAlgorithm subclasses,
which implement the actual algorithms used for rendering forces. Through
composition using multiple algorithms complex effects can be created. Since
the calculations are executed in the haptic thread, care must be taken when
modifying parameters on algorithms used by an actively rendering force ef-
fect. To update parameters in a thread-safe manner, use the ForceEf-
fect::setAlgorithmParameter operations, which will provide the mechanism

6

http://www.sensable.com/
http://www.novint.com/

to update the algorithms safely through System::update. This is done to
prevent the rather expensive locking of data every haptic frame.

The ForceEffectManager object controls the list of available effects.
Force effects can be either created programmatically using ForceEffect-
Manager::getSingleton().createEffect, and add named algorithms through
ForceEffect::addAlgorithm and tweak settings fo both algorithm(s) and the
created effect, or by specifying the effect and algorithms in a ’script’ which is
loaded at runtime.

To apply a force effect you call the ForceEffect::start method and give it
a pointer to the device you want apply the calculated force to.

7

Chapter 3

Scripts

OgreHaptics drives some of its features through scripts in order to make it
easier to set up. The scripts are simply plain text files which can be edited in
any standard text editor, and modifying them immediately takes effect on your
OgreHaptics-based applications, without any need to recompile. This makes
prototyping a lot faster. Here are the items that OgreHaptics lets you script:

ForceEffect Scripts for the creation of force effects (section 3.1)

3.1 ForceEffect Scripts

ForceEffect scripts allow you to define effects used for haptic display which can
be reused and modified easily without having to hard-code the settings in your
source code. This allows a quick turnaround on any changes you make. Force
effects which are defined in scripts are used as templates, and multiple actual
effects can be created from them at run-time.

3.1.1 Loading Scripts

Force effect scripts are loaded at initialisation time by the sys-
tem: by default it looks in all common resource locations (see
Ogre::Root::addResourceLocation) for files with the ’.forceeffect’ extension
and parses them. If you want to parse files with a different extension, use the
ForceEffectManager::getSingleton().parseAllSources method with your
own extension, or if you want to parse an individual file, use ForceEffectMan-
ager::getSingleton().parseScript.

Once scripts have been parsed, your code is free to instantiate effects based
on them using the ForceEffectManager::createEffect method which can
take both a name for the new effect, and the name of the template to base
it on (this template name is in the script).

3.1.2 Format

Several effects may be defined in a single script. The script format is pseudo-
C++, with sections delimited by curly braces (’{’, ’}’), and comments indicated

8

by starting a line with ’//’ (note, no nested form comments allowed). The
general format is shown in the example below.

force_effect Examples/ConstantForce
{

sustain_mode temporal
sustain_duration 200
fade_in_duration 75
fade_out_duration 100

algorithm Constant
{

magnitude 11
direction 0 0 1

}
}

Every force effect in the script must start with ’force effect’ to define the
type of object which is about to be created. This must be done, since ogre
provides means to combine multiple types of scripts in one file, the *.os file.
After the object definition the name is written, in this example ’Examples/-
ConstantForce’, which must be globally unique. It may include path characters
to logically divide up your force effects and to avoid duplicate names, but the
system does not treat the name as hierarchical, just as a string.

A force effect script can have top-level attributes set using the scripting
commands available, such as ’fade in duration’ to set the time in milliseconds
in which the force effect will fade in. Algorithms are added as nested definitions
within the script. The parameters available in the algorithm sections are entirely
dependent on the type of algorithm.

3.1.3 Top level ForceEffect Attributes

sustain mode A force effect can be started in two different modes for the
sustaining state. In temporal mode an effect will run as long as the set
duration, in persistant mode an effect will run until it is stopped explicitly.

Possible values are ’temporal’ and ’persistant’. Defaults to ’persistant’.

sustain duration Describes the duration of the sustaining state in millisec-
onds of an effect in sustain mode ’temporal’. Defaults to 0.

fade in duration Describes the duration in milliseconds by which the force
effect will be faded in linearly. Defaults to 0.

fade out duration Describes the duration in milliseconds by which the force
effect will be faded out linearly. Defaults to 0.

3.1.4 Algorithms

An algorithm section in your force effect script defines the type of algorithms
used for rendering forces to a haptic device. A force effect can have an unlim-
ited number of algorithms, although the more algorithms are used, the more
expensive the force effect will be to render.

9

OgreHaptics provides several algorithm types to be used, but more types
can be added through plugins. Algorithms are registered with a unique name,
and you can use that name to define an algorithm to be used by the force effect.
The following list describes the attributes of the algorithms implemented in the
default plugin.

Constant Used to render a constant force in a single direction using the formula
F = s · ~v, where s is the magnitude of the force and ~v, which is of unit
length, the direction.

magnitude Describes the magnitude of the force in N . Defaults to 0.

direction Describes the direction of the force in device workspace coor-
dinates. Vector will be normalised. Defaults to a unit-z vector.

SawtoothWave Renders a force using the formula F = ((2 · (t · −(bt · f + 1
2c) ·

A + D) · ~v, where t is time in seconds since the start of the wave, f the
number of periods per second, A is the amplitude, D the offset and ~v the
direction of the output.

amplitude Describes the amplitude of the sine wave. Defaults to 0.

offset Describes the offset of the sine wave. Defaults to 0.

frequency Describes the frequency of the sine wave in Hz. Defaults to
0.

inverse ramping Whether this sawtooth wave is ramping in reverse. De-
faults to false.

direction Describes the direction over which the sine wave oscillates in
device workspace coordinates. Vector will be normalised. Defaults
to a unit-z vector.

SineWave Renders a force using the formula F = (A · sin(ωt ·θ)+D) ·~v, where
A is the amplitude, ω the angular frequency in radians per second, θ the
phase shift, D the offset and ~v the direction of the output.

amplitude Describes the amplitude of the sine wave. Defaults to 0.

offset Describes the offset of the sine wave. Defaults to 0.

frequency Describes the frequency of the sine wave in Hz. Defaults to
0.

phase shift Describes the phase shifting of the sine wave in degrees. De-
faults to 0.

direction Describes the direction over which the sine wave oscillates in
device workspace coordinates. Vector will be normalised. Defaults
to a unit-z vector.

Spring Used for rendering a spring force using Hooke’s law: F = k · ~v, where
k is the stiffness of the spring in N/mm and ~v is the displacement from
the equilibrium/anchor position.

stiffness Describes the stiffness of the spring in N/mm. Defaults to 0.

anchor position Describes the anchor or equilibrium position in device
workspace coordinates. Defaults to the center.

10

Viscous Renders a force based on Stokes’ law: F = 6π ·µ ·R ·V , where µ is the
fluid’s viscosity (in Pa · s), R is the radius of the particle moving around
in the fluid (in m) and V is the velocity of the particle.

viscosity Describes the viscosity of a fluid in Pa · s. Defaults to 0.

radius Describes the radius of the sphere moving through the fluid in m.
Defaults to 0.001m (1mm).

11

Chapter 4

Known Issues

A number of implemented features are not running as expected and will hope-
fully be overcome in the future. Here is the list of issues that we are aware
of:

• The ViscousForceAlgorithm is causing an
HD EXCEEDED MAXIMUM VELOCITY error using the OpenHapticsTM

SDK. It can be run with extremely low values, but we are looking for an-
other implementation.

12

	Introduction
	Haptic Rendering
	Multithreading
	Spaces

	Core Objects
	System
	RenderSystem
	Device
	ForceEffect

	Scripts
	ForceEffect Scripts
	Loading Scripts
	Format
	Top level ForceEffect Attributes
	Algorithms

	Known Issues

